Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Article in English | IMSEAR | ID: sea-152937

ABSTRACT

Floating matrix tablets of losartan potassium were developed with an aim to prolong its gastric residence time and increase the bioavailability of drug. Rapid gastrointestinal transit could result in incomplete drug release from the drug delivery system above the absorption zone leading to diminished efficacy of the administered dose. The tablets were prepared by wet granulation technique, using polymers Methocel K15 and Methocel K100 in combination with other standard excipients. Sodium bicarbonate was incorporated as gas generating agent. The effects of sodium bicarbonate and polymers on drug release profile and floating properties were investigated. It was found that viscosity of Methocel K15 and Methocel K100 along with sodium bicarbonate had significant impact on the release and floating properties of the delivery system. The decrease in the release rate was observed with an increase in the viscosity of the polymeric system. Polymer with high viscosity Methocel K100 was shown to be beneficial than low viscosity polymer Methocel K15 in improving the floating properties of gastric floating drug delivery system (GFDDS). The observed difference in the drug release and floating properties of GFDDS could be attributed to the difference in the basic properties of two polymers, Methocel K15 and Methocel K100 due to their water uptake potential and functional group substitution. The release mechanism were explored and described with zero-order, first-order and Korsmeyer-Peppas equations. The drug release profiles and buoyancy of the floating tablets were stable when stored at 40°C/75% RH for 6 months.

2.
Article in English | IMSEAR | ID: sea-167910

ABSTRACT

Floating matrix tablets of losartan potassium were developed with an aim to prolong its gastric residence time and increase the bioavailability of drug. Rapid gastrointestinal transit could result in incomplete drug release from the drug delivery system above the absorption zone leading to diminished efficacy of the administered dose. The tablets were prepared by wet granulation technique, using polymers Methocel K15 and Methocel K100 in combination with other standard excipients. Sodium bicarbonate was incorporated as gas generating agent. The effects of sodium bicarbonate and polymers on drug release profile and floating properties were investigated. It was found that viscosity of Methocel K15 and Methocel K100 along with sodium bicarbonate had significant impact on the release and floating properties of the delivery system. The decrease in the release rate was observed with an increase in the viscosity of the polymeric system. Polymer with high viscosity Methocel K100 was shown to be beneficial than low viscosity polymer Methocel K15 in improving the floating properties of gastric floating drug delivery system (GFDDS). The observed difference in the drug release and floating properties of GFDDS could be attributed to the difference in the basic properties of two polymers, Methocel K15 and Methocel K100 due to their water uptake potential and functional group substitution. The release mechanism were explored and described with zero-order, first-order and Korsmeyer-Peppas equations. The drug release profiles and buoyancy of the floating tablets were stable when stored at 40°C/75% RH for 6 months.

3.
RBCF, Rev. bras. ciênc. farm. (Impr.) ; 43(4): 529-534, out.-dez. 2007. ilus, graf, tab
Article in English | LILACS | ID: lil-479321

ABSTRACT

The present study involves preparation and evaluation of floating microspheres of verapamil hydrochloride for improving the drug bioavailability by prolongation of gastric residence time. Cellulose acetate, acrycoat S100 and eudragit S100 microspheres loaded with verapamil hydrochloride were prepared by solvent diffusion-evaporation method. The microspheres had smooth surfaces, with free-flowing and good-packing properties. The yield of the microspheres was up to 70.51 percent and cellulose acetate microspheres entrapped the maximum amount of the drug. Scanning electron microscopy confirmed their hollow structures with sizes in the range 251.80 to 350.75 mm. The prepared microspheres exhibited prolonged drug release and remained buoyant for more than 12 h. Radiographic images of dog stomach revealed that cellulose acetate microspheres loaded with barium sulphate floated on the gastric fluid for about 3.2 h. In vitro release studies demonstrated non-Fickian diffusion of drug from the microspheres.


O presente estudo envolve a preparação e a avaliação de microesferas flutuantes de cloridrato de verapamil para o melhoramento da biodisponibilidade do fármaco por meio do prolongamento do tempo de residência gástrica. Prepararam-se, por meio do método de difusão-evaporação de solvente, microesferas de acetato de celulose, acrycoat S100 e eudragit S100 carregadas com cloridrato de verapamil. As microesferas apresentaram superfícies regulares, com propriedades de fluxo livre e de bom empacotamento. O rendimento das microesferas foi superior a 70,51 por cento e as microesferas de acetato de celulose captaram a quantidade máxima do fármaco. Microscopia eletrônica de varredura confirmou as cavidades em suas estruturas, com tamanhos na faixa de 251,80 a 350,75 mm. As microesferas preparadas apresentaram liberação prolongada do fármaco e permaneceram flutuantes por mais que 12 h. Imagens radiográficas do estômago de cão revelaram que as esferas de acetato de celulose carregadas com sulfato de bário flutuaram no fluido gástrico por, aproximadamente, 3,2 h. Estudos de liberação in vitro demonstraram difusão não-Fickiana dos fármacos das microesferas.


Subject(s)
Stomach/metabolism , Microspheres , Verapamil/pharmacokinetics , Biological Availability , Microscopy, Electron, Scanning/methods
SELECTION OF CITATIONS
SEARCH DETAIL